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Dynamical r-matrix for the elliptic Ruijsenaars–Schneider
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§ Dipartimento di Fisica, Terza Università di Roma, Via Vasca Navale 84, Rome, Italy
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Abstract. The classicalr-matrix structure for the generic elliptic Ruijsenaars–Schneider model
is presented. It makes manifest the integrability of this model as well as of its discrete-time
version that was constructed in a recent paper.

The problem of finding a classicalr-matrix structure for the Calogero–Moser (CM) type of
models aroused some attention a few years ago, see [1–3]. The fact that this had remained
an open problem until relatively recently probably lies in the specific feature that for these
models ther-matrix turns out to be of a dynamical type, i.e. it depends on the dynamical
variables. Similar features have been found in other integrable many-body problems as
well, e.g. systems separable in the generalized ellipsoidal coordinates [4]. The difficulty
presented by the dynamical aspect of ther-matrix is that the Poisson algebra of a model
whose structural constants are given by a dynamicalr-matrix is, generally speaking, no
longer closed, and that there is no closed-form Yang–Baxter equation defining ther-matrix.
So far, only for one particular example—the spin generalization of the Calogero–Moser
model—a proper algebraic setting (the Gervais–Neveu–Felder equation) is found [5] which
also allows one to quantize the model. For other models finding the algebraic interpretation
of the dynamicalr-matrix and solving the quantization problem are still open questions.

One of the most important integrable many-body systems is the relativistic variant of
the Calogero–Moser model, the so-called Ruijsenaars–Schneider (RS) model introduced
in [6, 7]. Its importance lies in the fact that it can be considered as aq-deformation of the
CM model and as such the corresponding quantum model is realized in terms of commuting
difference operators whose eigenfunctions are given in terms of Macdonald polynomials,
see, e.g., [8, 9]. On the classical level, a dynamicalr-matrix was found only very recently in
[10] for the rational and trigonometric (hyperbolic) cases, although a special parameter-case
was already treated in an earlier paper, [11]. A geometric interpretation was given in a
recent preprint, see [12]. So far, no results have been found for the full elliptic case. That,
in fact, is the subject of this letter where we will present the dynamicalr-matrix structure for
the RS model in the generic elliptic case, thus generalizing the previous results of [10–12].

‖ On leave from: Department of Mathematical and Computational Physics, Institute of Physics, St Petersburg
University, St Petersburg 198904, Russia.
¶ On leave from: Steklov Mathematical Institute, Fontanka 27, St Petersburg 191011, Russia.
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Let us describe the Ruijsenaars–Schneider model and its discrete-time version. The
equations of motion of the RS model in its generic (elliptic) form read

q̈i =
∑
j 6=i

q̇i q̇j v(qi − qj ) i = 1, . . . , N (1a)

where the potentialv(x) is given by

v(x) = ℘ ′(x)

℘ (λ) − ℘(x)
(1b)

in which ℘(x) = ℘(x|ω1, ω2) is the WeierstrassP-function, 2ω1,2 being a pair of periods,
andλ is the (relativistic) deformation parameter. As shown by Ruijsenaars and Schneider
in [6, 7], this multi-particle model is integrable, and carries a representation of the Poincaré
algebra in two dimensions. Moreover, a large number of the characteristics of the CM
model are generalized in a natural way to the relativistic case, such as the existence of a
Lax pair, a sufficient number of integrals of the motion in involution, and exact solution
schemes in the special cases of rational and trigonometric/hyperbolic limits. The elliptic
case has recently been investigated by Krichever and Zabrodin in [13] in connection with
the non-Abelian Toda chain.

In [14] an exact time-discretization of equations (1a) was constructed, given by an
integrable correspondence of the form

N∏
k=1
k 6=`

σ (q` − qk + λ)

σ(q` − qk − λ)
=

N∏
k=1

σ(q` − q̃k) σ (q` − q˜k + λ)

σ(q` − q˜k) σ (q` − q̃k − λ)
` = 1, . . . , N . (2)

In (2) theqk denote the particle positions for the time variable equal ton, the tilde being a
shorthand notation for the discrete-time shift, i.e. forqk(n) = qk we write qk(n + 1) = q̃k,
andqk(n−1) = q˜k. The functionσ(x) is the Weierstrass sigma-function, (see the appendix
for the definition), andλ is the parameter of the system as in the continuous case (1).

The initial value problem for equations (2), given initial particle positions{qi(0)} and
{qi(1)}, leads to the problem of solving, at each iteration step, a coupled system ofN

algebraic equations forN unknowns, and it was shown in [14] that in fact it is an integrable
symplectic correspondence (for a definition, see e.g. [15]) with respect to the standard
symplectic form� = ∑

k dpk ∧ dqk. This implies that any branch of the correspondence
given by equations (2) defines a canonical transformation with respect to the standard
Poisson brackets given by

{pk, q`} = δk` {pk, p`} = {qk, q`} = 0 . (3)

Here

p` =
N∑

k=1

(− log |σ(q` − q˜k)| + log |σ(q` − q˜k + λ)|) . (4)

The discrete equations of motion (2) arise from a discrete Lax pair of the form

Lκ =
N∑

i,j=1

h2
i 8κ(qi − qj + λ)eij (5a)

Mκ =
∑
i,j

h̃2
i 8κ (̃qi − qj + λ)eij (5b)

using the discrete Lax equation

L̃κMκ = MκLκ . (6)
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Notice here that in (5) we use a different gauge from the symmetric one used in [14]. In
equations (5) the variableκ is an additional spectral parameter, and the matriceseij are the
standard elementary matrices whose entries are given by(eij )k` = δikδj`. The function8κ

is called the Baker function and is defined as

8κ(x) ≡ σ(x + κ)

σ (x)σ (κ)
(7)

which obeys a number of functional relations listed in the appendix. The auxiliary variables
h2

` can be expressed in terms of the canonical variables, we obtain

h2
` = ep`

∏
k 6=`

σ (q` − qk − λ)

σ(q` − qk)
. (8)

In terms of these variables we have the following Poisson brackets:

{qk, q`} = 0 {logh2
k , q`} = δk`

{logh2
k , logh2

`} = ζ(qk − q` + λ) + ζ(qk − q` − λ) − 2ζ(qk − q`) k 6= ` .
(9)

It is easy to see that in terms of the canonical variablesp` and q`, the Lax matrixLκ in
(5a) is exactly the same as the one of the continuous RS model, see [16]. In fact, taking
the continuum limit on the discrete-time part of the Lax pair (5), namely the matrixMκ

(5b), we obtain a Lax pair for the continuous RS model given by equations (1a). Since
the Lκ -matrix for the discrete and continuous models is the same, the proof of involutivity
of the invariants (integrals)I` = tr L`

κ is the same in both cases, and sufficient to assess
the Liouville integrability both discrete as well as continuous. The proof can be found in
the original paper of Ruijsenaars [7], but is rather involved. Having at one’s disposal an
r-matrix structure would make the involutivity manifest. So far such anr-matrix has not
been found in the full elliptic case. We will now proceed to establish thisr-matrix structure.

As was noted recently by Suris, see [12], the main difference between ther-matrix
structures of the relativistic and non-relativistic CM models lies in the fact that the latter
is given in terms of a linear Lie–Poisson structure/bracket, whereas the former is given in
terms of a quadratic bracket, see also [11]. The Poisson structure for the RS model will
thus be given in the following quadraticr-matrix form (see [17, 18]):

{ Lκ
⊗, Lκ ′ } = Lκ ⊗ Lκ ′r−

κ,κ ′ − r+
κ,κ ′Lκ ⊗ Lκ ′ + (Lκ ⊗ 1) s+

κ,κ ′ (1 ⊗ Lκ ′)

− (1 ⊗ Lκ ′) s−
κ,κ ′ (Lκ ⊗ 1) . (10)

The following symmetry conditions must hold for ther-matrices,r±
κ,κ ′ ands±

κ,κ ′ :

Pr±
κ,κ ′P = −r±

κ ′,κ P s+
κ,κ ′P = s−

κ ′,κ (11a)

whereP is the permutation matrix in the tensor product of two matrices, i.e.P(A⊗B)P =
B ⊗ A, as well as the condition

r+
κ,κ ′ − s+

κ,κ ′ = r−
κ,κ ′ − s−

κ,κ ′ (11b)

in order that the quadratic Poisson algebra generates Hamiltonian flows for the invariants of
the model, see [12, 19]. The condition (11b) was also formulated in [19] in order to allow
for a quadratic algebra on the lattice in terms of a local Lax representation to be integrated
to a quadratic algebra in terms of the monodromy matrix.

The choice of a gauge for the Lax matrices seems to be quite important in that it
influences to a great extent the complexity of the associatedr-matrix. The Lax matrix (5a)
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has the nice property that it yields a remarkably simpler-matrix structure even in the elliptic
case. In fact, ther-matrices we found are of the form

r−
κ,κ ′ = rκ,κ ′ − sκ + Psκ ′P (12a)

r+
κ,κ ′ = rκ,κ ′ + u+ + u− (12b)

s+
κ,κ ′ = sκ + u+ (12c)

s−
κ,κ ′ = Psκ ′P − u− (12d)

where†
rκ,κ ′ = r0

κ,κ ′ +
∑

i

ζ(κ − κ ′)eii ⊗ eii +
∑
i 6=j

ζ(qi − qj )eii ⊗ ejj (13a)

r0
κ,κ ′ =

∑
i 6=j

8κ−κ ′(qi − qj )eij ⊗ eji (13b)

sκ =
∑
i,j

(
L−1

κ ∂λLκ

)
ij

eij ⊗ ejj (13c)

u± =
∑
i,j

ζ(qj − qi ± λ)eii ⊗ ejj . (13d)

The matrix elements in (13c) can be calculated explicitly using equation (A11) for the
inverse of the elliptic Cauchy matrix as well as making diligent use of the elliptic Lagrange
interpolation formulae (A8) and (A9), and this yields the following expression:(
L−1

κ ∂λLκ

)
ij

= δij

[
ζ(κ + Nλ) − ζ(λ) +

∑
k 6=i

(ζ(qi − qk − λ) − ζ(qi − qk))

]

+(1 − δij )

 N∏
k=1
k 6=i

σ (qi − qk − λ)

σ(qi − qk)


 N∏

k=1
k 6=j

σ (qj − qk)

σ (qj − qk − λ)

 8κ+Nλ(qi − qj ) .

(14)

The proof of ther-matrix structure (10) together with (12) and (13) is by direct computation
starting from the explicit form of theL-matrix (5a) and the Poisson brackets (9) and making
use of a number of elliptic relations which are listed in the appendix. We will not give
any details, but just restrict ourselves to giving a few intermediate relations, which can be
established using the formulae from the appendix, namely

(Lκ ⊗ Lκ ′) sκ =
∑
ij

∑
i ′j ′

h2
i h

2
i ′8κ(qi − qj + λ)8κ ′(qi ′ − qj ′ + λ) eij ⊗ ei ′j ′

×δjj ′
[
ζ(κ + qi − qj + λ) − ζ(qi − qj + λ)

]
(15a)

(Lκ ⊗ 1) sκ (1 ⊗ Lκ ′) =
∑
ij

∑
i ′j ′

h2
i h

2
i ′8κ(qi − qj + λ)8κ ′(qi ′ − qj ′ + λ) eij ⊗ ei ′j ′

×δji ′
[
ζ(κ + qi − qj + λ) − ζ(qi − qj + λ)

]
(15b)

† In (13c) by the matrix∂λLκ we mean

∂λLκ =
N∑

i,j=1

h2
i 8κ (qi − qj + λ)

[
ζ(κ + qi − qj + λ) − ζ(qi − qj + λ)

]
eij

i.e. we differentiate only with respect to the explicit dependence on the parameterλ.



Letter to the Editor L337

as well as[
r0
κ,κ ′ , Lκ ⊗ Lκ ′

] =
∑
ij

∑
i ′j ′

h2
i h

2
i ′8κ(qi − qj + λ)8κ ′(qi ′ − qj ′ + λ) eij ⊗ ei ′j ′

× {
(1 − δii ′)(1 − δjj ′)

[
ζ(qi − qi ′) + ζ(qi ′ − qj + λ) + ζ(qj − qj ′)

− ζ(qi − qj ′ + λ)
] + δjj ′(1 − δii ′)

[
ζ(qi − qi ′) − ζ(κ + qi − qj + λ)

+ ζ(κ ′ + qi ′ − qj ′ + λ) + ζ(κ − κ ′)
] + δii ′(1 − δjj ′)

[
ζ(qj − qj ′)

+ ζ(κ + qi − qj + λ) − ζ(κ ′ + qi ′ − qj ′ + λ) − ζ(κ − κ ′)
]}

. (15c)

We remark here that ourr-matrices do not depend on momenta, like in the non-relativistic
case [2], which was the motivation for the choice of the gauge ofLκ .

As a direct application of ther-matrix structure let us calculate the (continuous) time
part of the Lax representation. It is obtained from the following formula:

(tr ⊗id)(Lκ ⊗ 1)(r+
κ,κ ′ − s+

κ,κ ′) = 8κ−κ ′(λ)Lκ ′ − 8κ(λ)Nκ ′ (16)

where

Nκ =
∑

i

[
ζ(κ)h2

i +
∑
j 6=i

h2
j ζ(qi − qj ) −

∑
j

h2
j ζ(qi − qj − λ)

]
eii +

∑
i 6=j

h2
i 8κ(qi − qj )eij

(17)

which, together with (5a), leads to the Lax representation found in [16] for the continuous
RS model (up to a gauge transformation!). Thus, the continuous equations of motion (1a)
corresponding to the Hamiltonian trLκ follow from the Lax equation

L̇κ = [Nκ , Lκ ] . (18)

Remarks. (i) The non-relativistic limit is obtained by lettingλ → 0 while scaling the
momentapi := λpi and making the canonical transformationpi := pi + ∑

k 6=i ζ(qi − qk)

such thath2
i → 1 + λpi + O(λ2) in (8). Ther-matrix structure is linear in that limit since

the L-matrix behaves as

Lκ → λ−1 + ζ(κ) +
∑

i

pieii +
∑
i 6=j

8κ(qi − qj )eij + O(λ)

whereas the matricesr±
κ,κ ′ , s±

κ,κ ′ enter in the following combination:

r+
κ,κ ′ + s−

κ,κ ′ → r
(nr)
κ,κ ′ + O(λ) (19)

in which the non-relativisticr-matrix is given by

r
(nr)
κ,κ ′ =

∑
i

(
ζ(κ − κ ′) + ζ(κ ′)

)
eii ⊗ eii +

∑
i 6=j

8κ−κ ′(qi − qj )eij ⊗ eji

+
∑
i 6=j

8κ ′(qi − qj )ejj ⊗ eij (20)

thus recovering the result of [2] in the leading terms.
(ii) We do not write down any Yang–Baxter-type relations between ther-matrices given

in (12), because as a consequence of their dynamical nature the Yang–Baxter algebra does
not seem to be closed, i.e. the Yang–Baxter 2-cocycle consists of terms which contain
Poisson brackets with theL-matrix itself. It is an interesting open problem to see whether
one can close the algebra on any level, leading to a possible truncation of some higher-order
Yang–Baxter cocycle. So far, no results along this direction exist.
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In this letter we have presented a classicalr-matrix structure of the full elliptic
Ruijsenaars–Schneider model. Since the model is the most general among the Calogero–
Moser type models for thesln Lie algebra, our result is in a sense conclusive. Nonetheless,
a number of questions have yet to be answered. Since the dynamical nature of ther-matrices
implies that the corresponding Yang–Baxter algebra is not closed, it is not yet clear how to
use it for quantization.

Concerning the quantization problem, the recent result of Hasegawa [20] should be
mentioned, who has found an interesting connection between the quantumL-operator
associated with Belavin’sR-matrix and the quantum integrals of the Ruijsenaars’ model.
This somehow implies that on the classical level there should exist a gauge transformation
involving the dynamical variables between an ellipticr-matrix of Belavin type and the one
we have constructed in this letter.

Another result concerns the separation of variables approach leading to the explicit
integral representations for the Macdonald polynomials associated with the trigonometric
RS model, see [21]. So far the only result for the elliptic case is the separation of variables
for the three-particle non-relativistic Calogero–Moser model [22]. The ellipticr-matrix
could presumably help in constructing a separation of variables in the general case.

One more possible application of the results of this letter could lie in the time
discretization of the RS model constructed in [14]. One feature of the proposed time
discretization is that these discrete models share the time-independent part of the Lax pair
with the corresponding continuous models and, consequently, the invariants take the same
form in both cases. Thus, the proof of Liouville integrability (or the involutivity of the
invariants) is exactly the same as for the continuous model. For the discrete models it
seems that the most prominent role is played by theM-matrix. In fact, in similar systems
related to integrable lattices it was found that there exists an extended Yang–Baxter structure
which incorporates theM-matrix as well as theL-matrix in the Yang–Baxter algebra. Now
that a classicalr-matrix structure is available for the generic RS system, it would also be
interesting to search for similar extended YB structures for these many-body systems.

VBK is supported by EPSRC under Grant No GR/K63887. OR is grateful to the Department
of Applied Mathematical Studies of the University of Leeds for its hospitality during his
visit.

Appendix

Here, we collect some useful formulas for elliptic functions, see also the standard textbooks,
e.g. [23]. The Weierstrass sigma-function is defined by

σ(x) = x
∏

(k,`)6=(0,0)

(
1 − x

ωk`

)
exp

[
x

ωk`

+ 1

2

(
x

ωk`

)2
]

(A1)

with ωkl = 2kω1 +2`ω2 and 2ω1,2 being a fixed pair of the primitive periods. The relations
between the Weierstrass elliptic functions are given by

ζ(x) = σ ′(x)

σ (x)
℘ (x) = −ζ ′(x) (A2)

whereσ(x) andζ(x) are odd functions and℘(x) is an even function of its argument. From
an algebraic point of view, the most important property of these elliptic functions is the
existence of a number of functional relations, the most fundamental being

8κ(x)8κ(y) = 8κ(x + y)
[
ζ(κ) + ζ(x) + ζ(y) − ζ(κ + x + y)

]
(A3)
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The famous three-term relation forσ(x) can be cast in the following convenient form:

8κ(x)8λ(y) = 8κ(x − y)8κ+λ(y) + 8κ+λ(x)8λ(y − x) (A4)

which is obtained from the elliptic analogue of the partial fraction expansion, i.e.
equation (A3).

There are a few additional important identities that are used in the proof of ther-matrix
structure, the main one being given by

8κ−κ ′(a − b)8κ(x + b)8κ ′(a + y) − 8κ−κ ′(x − y)8κ(y + a)8κ ′(x + b)

= 8κ(x + a)8κ ′(y + b)
[
ζ(a − b) + ζ(x + b) − ζ(x − y) − ζ(y + a)

]
(A5)

which can be derived from (A4), together with (A3), and

8κ−κ ′(x − y)8κ(y + a)8κ ′(x + a)

= 8κ(x + a)8κ ′(y + a)
[
ζ(x − y) − ζ(κ + x + a) + ζ(κ ′ + y + a)

+ ζ(κ − κ ′)
]
. (A6)

It is equations (A5) and (A6) that are used in the derivation of (15c) which forms the main
step in the computation of ther-matrix.

In [14] an elliptic version of the Lagrange interpolation formula was used, which was
derived on the basis of an elliptic version of the Cauchy identity. We can write the elliptic
Cauchy identity in the following elegant form:

det
(
8κ(xi − yj )

) = 8κ(6)σ(6)

∏
k<` σ (xk − x`)σ (y` − yk)∏

k,` σ (xk − y`)

where6 ≡
∑

i

(xi − yi) . (A7)

An elliptic form of the Lagrange interpolation formula is obtained by expanding (A7) along
one of its rows or columns. Thus, we obtain
N∏

i=1

σ(ξ − xi)

σ (ξ − yi)
=

N∑
i=1

8−6(ξ − yi)

∏N
j=1 σ(yi − xj )∏N
j=1
j 6=i

σ (yi − yj )
when6 =

N∑
i=1

(xi − yi) 6= 0

(A8)

and
N∏

i=1

σ(ξ − xi)

σ (ξ − yi)
=

N∑
i=1

[
ζ(ξ − yi) − ζ(x − yi)

] ∏N
j=1 σ(yi − xj )∏N
j=1
j 6=i

σ (yi − yj )

when
N∑

i=1

(yi − xi) = 0 (A9)

(herex denotes one of the zerosxi). Note that in this case the left-hand side is a meromorphic
function on the elliptic curve as a consequence of Abel’s theorem. It can be easily verified
that equation (A9) is independent of the choice ofx as a consequence of the relation

N∑
i=1

∏N
j=1 σ(yi − xj )∏N
j=1
j 6=i

σ (yi − yj )
= 0 when

N∑
i=1

(yi − xi) = 0 (A10)

(see, e.g., [23, p 451]), which follows from equation (A8) in the limit6 → 0.
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Finally, we give the expression for the inverse of the elliptic Cauchy matrix, namely[
(8κ(x· − y·))−1]

ij
= 8κ+6(yi − xj )

P (yi)Q(xj )

Q1(yi)P1(xj )
(A11)

(with 6 as before), in terms of the elliptic polynomials

P(ξ) =
N∏

k=1

σ(ξ − xk) Q(ξ) =
N∏

k=1

σ(ξ − yk)

and

P1(xj ) =
∏
k 6=j

σ (xj − xk) Q1(yi) =
∏
k 6=i

σ (yi − yk) . (A12)

Equation (A11) can be derived using (A8) and (A9), and is used to derive equation (14) in
the main text.
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